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Abstract: As custodians of deep time, palaeontologists have

an obligation to seek the causes and consequences of long-

term evolutionary trajectories and the processes of ecosystem

assembly and collapse. Building explicit process models on the

relevant scales can be fraught with difficulties, and causal

inference is typically limited to patterns of association. In this

review, we discuss some of the ways in which causal connec-

tions can be extracted from palaeontological time series and

provide an overview of three recently developed analytical

frameworks that have been applied to palaeontological

questions, namely linear stochastic differential equations, con-

vergent cross mapping and transfer entropy. We outline how

these methods differ conceptually, and in practice, and point

to available software and worked examples. We end by dis-

cussing why a paradigm of dynamical causality is needed to

decipher the messages encrypted in palaeontological patterns.

Key words: time series, dynamical systems, Granger causal-

ity, stochastic differential equations, convergent cross map-

ping, transfer entropy.

WE INHAB IT a world fundamentally shaped by the deep

history of geobiological interactions. Long-term ecological

and evolutionary dynamics coupled with geological pro-

cesses have made our planet a vast reservoir of living and

fossil biomass that is literally fuelling our modern civiliza-

tion, and the rapid depletion of this biomass holds dire

consequences for humankind (Schramski et al. 2015). As

modern ecosystems head towards uncharted territories,

geohistorical data are our only record of ecosystems

undisturbed by human activities and of biotic responses

to global change in the past (Dietl et al. 2015). Palaeon-

tologists thus have an obligation not only to document

the rich complexity of life’s history, but also to extract

from this complexity the causal structures that govern its

dynamics (Fig. 1).

The recent growth of large-scale global and regional

palaeontological data compilations, as well as high-resolu-

tion examination of local stratigraphic sections, has pro-

vided momentum for palaeontologists to rise to this

challenge. Increasingly comprehensive records of taxo-

nomic richness, abundance and phenotypic variability,

combined with improved chronological and phylogenetic

constraints, yield time series that can capture the

dynamics of underlying biological processes, and be

meaningfully compared with other deep-time records of

environmental change. We will argue that these time ser-

ies beg for causal explanations that are not restricted to

unique events, but accommodate dynamical, temporally

extensive modes of causality.

Although a strong interest in using quantitative

approaches to understand temporal trends in palaeontol-

ogy can be traced back to Simpson (1944) and earlier

(Brinkmann 1929), we believe that the first person to intro-

duce our field to formal time series analyses was David

Raup. While his collaboration with Gould, Schopf and

Simberloff on stochastic evolution was ongoing (Raup

et al. 1973), he proposed a more formalized use of stochas-

tic time-series models (random walks) to study evolution-

ary time series (Raup 1977a). These models became the

canonical null hypotheses against which presumed evolu-

tionary patterns were judged (Raup & Crick 1981; Book-

stein 1987; Roopnarine et al. 1999; Hannisdal 2006).

Today, the use of stochastic time series models of pheno-

typic evolution has shifted from null hypothesis testing to

parameter estimation and model selection (Hunt 2006;

Hannisdal 2007; Hunt & Rabosky 2014). If a time series of
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phenotypic variability in fossil organisms is compared to a

group of different models, then a better fit to a specific

model is usually interpreted as statistical support for the

(implicitly causal) mechanism implied by the preferred

model.

Raup & Sepkoski (1984) also pioneered the use of

Fourier analysis to study the frequency power spectrum

of extinction intensities, concluding that there is a c.

26 million-year periodicity in extinction at the family

level. They speculated on astronomical and astrophysical

causes of the periodicity (and therefore of the extinc-

tions), because ‘purely biological or earthbound physical

cycles seem incredible’. Their paper was promptly fol-

lowed by Kitchell & Pena (1984) who used autoregressive

integrated moving average (ARIMA) models to infer a

dominant periodicity of about 31 million years with sub-

stantial uncertainty. Kitchell & Pena stressed that ‘period-

icity in a time series is insufficient evidence that a

periodic external force is causally responsible’, not least

because in natural systems, (quasi-)periodicity can arise

through internal dynamics without periodicity in the

external forcing, like in the case of predator–prey cycles.

The existence of a significant periodicity in the Phanero-

zoic extinction record and the extent to which matching

frequencies in other processes (astronomical or Earth

bound) imply a causal connection remain topics of con-

tinued debate in the current palaeontological literature

(Melott & Bambach 2017; Erlykin et al. 2018). Similar

controversies surrounding the causal implications of

matching periodicities are simmering in related fields,

such as the existence of Milankovitch cycles in Palaeozoic

sedimentary sequences (Hinnov et al. 2016; Smith et al.

2016) or in seafloor bathymetry (Huybers et al. 2016;

Olive et al. 2016). One way to break the impasse, is to

confront our time series with methods that seek to distin-

guish causative from correlative relationships.

From prediction to causality

Causality is a slippery concept that is widely discussed

across all scientific disciplines (e.g. Hill 1965; Winship &

Morgan 1999; Pearl 2009; Illari et al. 2011). For instance,

the search term ‘causality and science’ returned more

than 300 articles in the period 2008–2017 from the jour-

nal Philosophy of Science alone (averaging six articles per

issue). We will not attempt to summarize the history of

the causality concept here, but we note that the criteria

for identifying causal relationships have been continu-

ously subject to revision in the sciences. For instance, Karl

Pearson simply equated causation with correlation in the

form of contingency tables (Pearson 1911). Hill (1965)

famously discussed nine minimal criteria for empirically

identifying causal agents of disease that were the bench-

mark for epidemiologists for decades. Today, only one of

these criteria, temporal precedence (i.e. the disease-caus-

ing agent needs to occur before the disease), is generally

accepted in its original form (Fedak et al. 2015).

Controlled experiments, in which the effect of a single

factor is isolated and tested by direct manipulation, are

considered to be the gold standard of scientific causal

assessment. For a system of the kind outlined in Figure 1,

however, experiments are confined to numerical represen-

tation of processes in silico. For example, Earth system

models used in near-term climate projections are arguably

the most sophisticated tools available for numerical

experiments (Taylor et al. 2012). Yet, despite the vast

complexity of these models, the inclusion of key biologi-

cal processes is still in its infancy (e.g. Wieder et al. 2015)

and experiments are currently limited to millennial time

scales or shorter. Models of intermediate complexity are

better suited for exploring mechanistic hypotheses in deep

time (e.g. Meyer et al. 2016). Explicit process models,

including highly idealized mathematical representations,

will undoubtedly play an increasingly important role in

causal assessment in palaeontology.

Ultimately, however, process models need to specify a

model structure assumed to plausibly represent causal

mechanisms, which creates a vulnerability to model mis-

specification that can be difficult to assess (Wood & Tho-

mas 1999; Babtie et al. 2014). On the spectrum between
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F IG . 1 . The multiple causes of the fossil record. Schematic rep-

resentation of the multi-directional relationships between living,

fluid and solid earth components that combine to create the fos-

sil record. Fluid earth includes atmosphere and hydrosphere.

Note that while the rock record is viewed as a physical object

with mass and chemical composition that interacts with the

other active components (denoted by circles), the fossil record is

here viewed as a subset of the rock record. Adapted from Peters

& Heim (2011).

2 PALAEONTOLOGY



explicit process models and statistical analysis of patterns

of correlation, there is room for concepts that use either

stochastic parameterizations or an entirely equation-free

technique to detect causal connections directly from

observed time series. In the following, we present three

such methods that are amenable to palaeontological time

series analyses, namely: (1) linear stochastic differential

equations; (2) convergent cross mapping; and (3) transfer

entropy. Before we present the nuts and bolts of these

techniques, it is necessary to provide a brief introduction

to two underlying concepts from the field of time series

analysis: Granger causality and dynamical system recon-

struction.

Granger causality rests on the idea that a cause both pre-

cedes and helps predict its effect. Inspired by earlier theo-

ries of prediction, Granger (1963, 1969) implemented this

idea in the context of econometric time series analysis. His

original formulation was in terms of linear vector auto-

regressive models, in which the value of a variable at a given

time is modelled as a linear weighted sum of a set of values

from its own past, and from the past of a set of other vari-

ables. Each variable is a time series representing a stochastic

process, and the task is to find the weights that minimize

the prediction error. In the classical sense, a variable X is

said to ‘Granger cause’ Y if our ability to predict Y declines

when X is removed from the set of predictive variables.

Granger causality is a special case of transfer entropy (see

Transfer Entropy, below) and the two are equivalent for

Gaussian variables (Barnett et al. 2009).

It is not uncommon to explore the ‘cause precedes effect’

criterion by performing time lagged cross-correlation anal-

yses on a pair of time series, where the lagged series is inter-

preted as the effect if a significant cross correlation is found

between the two offset time-series. Such an approach may

have levels of false positives and false negatives that are

unacceptable (Liow et al. 2015) due to mismatches between

the underlying processes and the implicit assumptions

inherent in the lagged analyses performed.

In the context of time series analysis, (lagged) correla-

tions and associated regression analysis need to correct for

serial (or auto-)correlation, which is one of the problems

Granger helped elucidate with his work on cointegration,

unit root tests and causality. We do not intend to review

the use of classical methods like regression analysis here

(see Brown et al. 2011 for a review of their use in the cli-

mate change ecology literature). We note, however, that

the development of many standard statistical methods,

including regression, was motivated by a classical experi-

mental setting in which the cause–effect mechanism is

known and regression coefficients are intended to measure

(typically linear) effect size. The methods reviewed here

are meant to expand our toolkit to handle more general

systems where mechanisms may be unknown and experi-

ments are not feasible.

The criterion of improved prediction also has its limi-

tations. For example, if watching the weather report helps

us to predict the weather, then it Granger-causes the

weather, even if it is obviously not a true cause. In addi-

tion, Granger’s definition makes the unrealistic assump-

tion that all relevant variables are included in the analysis.

A variety of extensions and modifications of the original

definition have since been proposed (e.g. Chen et al.

2004; Eichler 2005; Barrett et al. 2010; Barnett & Seth

2015) including the much more flexible linear stochastic

differential equation framework described below, which

permits the identification of unobserved (latent) con-

founding factors and feedback.

Linear systems have the distinct advantage that they

can be broken down into parts that can be analysed sepa-

rately and then recombined. Matters become worse if

there is strong nonlinearity, which is ubiquitous in nature

and in our everyday experience. In a system where com-

ponents are interdependent, such as ecosystems or Earth

systems (Fig. 1), variables can interact in such a way that

any linear correlations between them can change as the

state of the system changes. Small perturbations at tipping

points can be associated with sudden regime shifts in the

response of ecosystems to environmental change (Burkett

et al. 2005) and in the dynamics of speciation (Nosil

et al. 2017). May (1976) alerted biologists to the fact that

even the simplest mathematical relations between two

species can yield highly complex, nonlinear and unpre-

dictable dynamics. Most nonlinear dynamical systems

cannot be solved analytically, but a geometric approach

can be used to characterize their properties. From a

dynamical systems perspective, predictive causality is

derived from the geometry of the dynamics, which can be

reconstructed without accounting for all the component

variables constituting the whole system. To provide some

context for the two equation-free methods described

herein, we need to highlight a few key concepts.

In dynamical systems theory, the state of the system is

described by coordinates in a state space (or phase space

for continuous-time systems). The number of interacting

components in the system determines the dimensionality

of its state space, and the time evolution of the system

forms trajectories in this space. In an open, dissipative

system that exchanges energy and matter with its environ-

ment, any dynamics will cease unless there is some driv-

ing force. Over a sufficient period of time, the driving

force and the dissipation will tend to balance, and the

system will settle on a typical behaviour. This typical

behaviour, towards which the system ‘gravitates’, is con-

fined to a subset of the state space known as an attractor.

Examples of attractors can be stable fixed points (e.g. a

pendulum with friction will converge on a position of

rest), limit cycles (e.g. predator–prey oscillations) or more

complex subsets such as the strange attractors of chaotic
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systems (e.g. the famous ‘butterfly’-shaped attractor of

the Lorenz system). The attractor is itself an invariant

subset of the dynamics: if we pick any point on the

attractor and follow its evolution under the dynamics of

the system, the resulting trajectory lies entirely on the

attractor. This implies that to study the long-term beha-

viour of the system we can seek to reconstruct the attrac-

tor, rather than the entire set of unobserved (latent)

variables constituting the whole system. State-space (at-

tractor) reconstruction is a starting point for the two

equation-free time series analysis approaches outlined

below.

Despite their conceptual and practical differences, all

three methods discussed in this review are ultimately

rooted in the notion of prediction improvement as a sta-

tistical way of making inroads to causality. They all begin

with measurements (assumed to represent variables that

capture unobserved processes of interest) which are

arranged as time series data that are then subject to statis-

tical analyses (Fig. 2). Other approaches exist that are

based on a stronger form of causality. The general frame-

work of structural equation modelling (Shipley 2016) pio-

neered by Sewall Wright (1921) has been formalized by

Pearl (2009) as model-based causal inference on graphs.

This approach rests on philosophical connections between

causality and probability (Spirtes et al. 2000) and on the

notion of intervention (Woodward 2003), and involves

the mathematical machinery of a causal calculus on direc-

ted acyclic graphs and Bayesian inference (Pearl 2009).

The causal graph formalism is widely used for modelling

causality, especially in the social sciences, and puts special

emphasis on interventions. For example, watching the

weather report may Granger-cause the weather, but

through intervention we could actively manipulate

the weather forecast to discover that it does not cause the

weather. Concerns have been raised, however, that the

causal graph formalism is less well-suited for explaining

spatially and structurally complex biological phenomena

(Kaiser 2016), and that the interventionist approach is

not applicable to dynamical systems in general (Weber

2016). Further discussion of causal graph methods is out-

side the scope of this review.

Some of the key features of the methods described

below are summarized in Table 1. These features are sub-

ject to change because all three methods are topics of

active research. We invite the reader to explore the meth-

ods on dedicated websites that provide software, detailed

user manuals and worked examples cited below.

TIME-SERIES APPROACHES FOR
CAUSAL INFERENCES

Linear stochastic differential equations

Linear stochastic differential equations (SDEs) are applied

to (palaeo)biological questions most commonly in the

form of an Ornstein–Uhlenbeck (OU) process for

F IG . 2 . Extracting causal structures from palaeontological time series. Ecological and evolutionary processes interact with environ-

mental dynamics to produce a fossil record (represented in the diagram by iconic fossils), which we then sample. Selected measure-

ments (shown as output from a database), together with chosen environmental data are then arranged in temporal sequence, as time

series. To avoid any subliminal ranking, we denote variables by generic symbols. If these time series are sufficiently informative, we

can use this inherent dynamical information to characterize the strength and directionality of causal connections between the variables,

represented as a causal diagram. Straight arrows between the symbols indicate causal directionality and the thickness of the arrows

indicates the strength of the relationships.
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describing time series of phenotypes (e.g. Lande 1976;

Hunt 2006). In the last few years, SDEs have also been

used in palaeontology to model systems within an

extended Granger causal framework.

To explain how SDEs can be used as a causal inference

tool, we first briefly describe the structure of a basic lin-

ear SDE. An SDE is simply a differential equation in

which at least one term is a stochastic process. We can

write a basic linear SDE in this form:

dXðtÞ ¼ �aðXðtÞ � lÞdt þ rdBðtÞ ð1Þ

where X(t) is the process of interest (dependent variable)

that changes with the independent variable time t. The

first part of the right-hand side of the equation,

a(X(t) � l)dt, describes the deterministic part of how X

changes with time. The second part of that, rdB(t) is the
stochastic component. a and l are parameters that char-

acterize the deterministic part of the process while r
describes the stochastic part. a, l and r are often

assumed to be constant in biological applications, but

they need not be. If the deterministic component is

absent, such that dX(t) = rdB(t), and r is constant, the

expression is reduced to a random walk (commonly

referred to as Brownian motion, or a Wiener process).

Where a, l and r are all constant, Equation 1 represents

an OU model which, roughly speaking, describes a ran-

dom walk with a tendency to move towards a long-term

average (l). For instance, if X represents body size, and

the left-hand side of Equation 1 reflects how fast body

size is changing, then a indicates how strongly body size

is ‘pulled’ towards the average body size l, while r is the

standard deviation of the stochastic changes in body size.

To illustrate how we can use SDEs to examine whether

there is a causal (Granger) relationship between two

time-series, let’s consider a hypothesis. Say that we would

like to test if sea surface temperature (SST) has influenced

body size in a taxon of interest. We need to have time

series of both a SST proxy (SST) and size measurements

(Size) for our taxon that overlap substantially in time

(but they don’t necessarily have to be measured at the

same time points).

We could describe SST as

dSSTðtÞ ¼ �aSSTðSSTðtÞ � lSSTÞdt þ rSSTdBSSTðtÞ ð2Þ

and Size as

dSizeðtÞ ¼ �aSizeðSizeðtÞ � lSizeÞdt þ rSizedBSizeðtÞ ð3Þ

by simply substituting X in Equation 1 by SST or Size,

and putting SST and Size subscripts on these equations to

signify that these parameters are specific to SST and Size.

As such, there is no modelled relationship between SST

and Size. However, we can imagine that SST and Size areT
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correlated or even causally related. To model a correlative

relationship, we can write the pair of equations

dSSTðtÞ ¼ �aSSTðSSTðtÞ � lSSTÞdt þ rSSTdBSSTðtÞ

(which is exactly the same as Equation 2)

and

dSizeðtÞ ¼ �aSizeðSizeðtÞ � lSÞdt þ rSizeð1� qÞ0:5dBSizeðtÞ
þ qrSizedBSSTðtÞ

ð4Þ
In Equation 4, there is an extra term q which describes

the temporal correlation between SST and Size in the

stochastic part of the equation. Note also that we could

have written the same for Equation 2 and the described

relationship between SST and Size would be the same.

To explicitly model a Granger causal relationship

between SST and Size where SST drives Size we retain

Equation 2 and write for Size,

dSizeðtÞ ¼ �aSizeðSizeðtÞ � lSize � b½SSTðtÞ � lSST�Þdt
þ rSizedBSizeðtÞ

ð5Þ

The deterministic part of the SST equation has entered

the deterministic part of the Size equation such that Size

now depends on SST. The stochastic part of the equa-

tion is unchanged. If we wanted to include the reversed

directionality of causality, we would need to write an

equivalent equation for SST (which, unlike in the correla-

tive equation, is not symmetrical). Note that no causal

link from another time series can be modelled if the puta-

tive ‘response’ time series is purely stochastic. We can

then compare the different models for SST and Size using

a chosen model comparison approach.

Some advantages of SDE for palaeontological data are

the following. First, because continuous processes are

modelled, there is no need for observed time series to be

measured at equidistant or the same time points. Second,

there is no need to detrend the data series given that sta-

tionarity is not assumed in SDE (e.g. random walks are

not strictly stationary). Third, SDEs allow for the mod-

elling of latent variables that are not observed. Fourth,

feedback loops, that is causal arrows in both directions,

are permissible. These last two features explicitly relax

two assumptions of the original formulation of Granger

causality. Fifth, uncertainty in measurements can be

included in parameter estimation. In addition, because

SDE is parametric, it allows us to characterize the proper-

ties of stochastic processes and the timescale on which

one time-series responds to another.

However, linear SDEs are unsuited to systems that are

highly non-linear. They are also in general not amenable

to studying counts (e.g. species richness) unless changes

in species richness can be justified as proxies of rates of

diversification, extinction or other such continuous-

valued quantities that reflect underlying processes.

Observed time series need to be have enough data points

to be informative, but we refrain from specifying the

minimum data requirements for any of the methods,

because these requirements depend on the ratio of signal

to noise, and on the type of dynamics of the underlying

processes. Even though it is possible to go beyond pair-

wise studies of time series in SDE, analysing systems with

more than three time-series can be quite expensive com-

putationally. In addition, like any other approach that

utilizes model comparison, but especially so because cau-

sal hypotheses are involved, the relative best fit of models

needs to be interpreted with caution, as even the best

model in a limited pool of models may have poor abso-

lute fit to the data (Pennell et al. 2015; Voje et al. 2018).

SDEs, as currently implemented, cannot accommodate

substantial changes in the causal relationship between

variables through time. If there is evidence to suggest that

relationships do not remain the same over time, then this

hypothesis could be tested with SDEs by dividing the time

series into two or more segments.

The linear stochastic differential equation approach to

causal inference has already seen a number of palaeonto-

logical applications. SDE has been used to show that coc-

colithophore size evolution in the Cenozoic was not

driven by global temperature changes but was character-

ized by local spatial dynamics (Reitan et al. 2012). The

SDE method has also been applied to the classic ‘ships

passing in the night’ question of bivalve versus bra-

chiopod diversification dynamics in the Phanerozoic,

where it was shown that bivalve extinction rates drove

brachiopod origination rates (Liow et al. 2015; Reitan &

Liow 2017). Recently, it has also been used in parallel

with the equation-free methods described in the following

sections to show that the observed global occupancy of

planktonic foraminifera has been dynamically coupled to

past oceanographic changes captured in deep-ocean tem-

perature reconstructions for the Cenozoic (Hannisdal

et al. 2017). Code written in R and C to run linear SDEs

in causal inference is currently available at http://folk.uio.

no/trondr/layered/ but a fully documented R package is

forthcoming.

Convergent cross mapping

As noted above, to study the long-term behaviour of a

deterministic dynamical system we may characterize the

state space (attractor), rather than the entire set of unob-

served variables constituting the whole system. Attractor

reconstruction is often the first step in non-linear time

series analysis, estimation of invariants (see Transfer
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Entropy, below) and forecasting/prediction. It was shown

in 1980 that for a dynamical system of multiple coupled

components, a time series of any single component can

be used to obtain a faithful representation of the dynam-

ics of the whole system, by combining the time series

with lagged instances of itself (Packard et al. 1980; Takens

1981).

If a time series X = {x(t1), . . ., x(tn)} is a component

of a dynamical system, we can reconstruct the state space

of the system by constructing m-dimensional time-delay

embedding vectors

EX ¼ f½xðtiÞ; xðti � sÞ; xðti � 2sÞ; . . .; xðti �msÞ�g
for all i 2 ½1; . . .; n�ms� ð6Þ

where x(ti) is the scalar value of the time series X at time

ti, and s is the embedding lag. The embedding lag is only

relevant for computational purposes and is unrelated to

any true causal delay in the dynamics. For a dynamical

system of unknown dimensionality, the optimal embed-

ding dimension m needs to be estimated (Sauer et al.

1991). Loosely speaking, the Takens embedding theorem

says that there is a one-to-one mapping between the

reconstructed states in EX and the states of the whole sys-

tem (Takens 1981; Sauer et al. 1991). The reconstructed

attractor thus preserves the dynamics of the system. If

two variables X and Y are coupled components of the

same dynamical system (i.e. they are causally connected)

then the one-to-one mapping between a reconstruction

EY and the system attractor is also true for a time series

of Y. Consequently, EX and EY will be in one-to-one cor-

respondence with each other, which can serve as a crite-

rion for causal detection.

Attractor reconstruction using delay embeddings has

found many applications in nonlinear time series analysis

(Kantz & Schreiber 2003). Sugihara et al. (2012)

introduced convergent cross mapping (CCM) as a non-

parametric statistical approach to detecting causality

between two observed time series. The CCM method

estimates dynamical coupling strength by quantifying the

extent to which the dynamics of the driver time series are

encoded in a time-delay embedding of the putative

response variable.

The CCM algorithm iteratively draws a subset of a time

series Y (the prediction set) and finds, for each point Pi
in the prediction set, the corresponding subset Li in the

reconstructed state space EX (the library set). Next, it

locates the nearest neighbours of Li in EX and uses a geo-

metric projection technique (Sugihara & May 1990) to

compute a predicted value Pi*. The closeness of predic-

tion, or cross-mapping skill, is measured by the Pearson

correlation between the predicted value Pi* and the

observed value Pi. The convergence part of CCM comes

from the expectation that, if the variables belong to the

same dynamical system, then the cross-mapping skill

should increase and converge with increasing size of the

library set used in the reconstruction.

In contrast to Granger causality approaches, which

use past values of the forcing variable to predict future

values of the response variables, CCM asks whether the

reconstructed states of the response variable can be

used to predict the states of the forcing variable.

Hence, the notation ‘X xmap Y’ refers to estimating y

(ti) from the corresponding delay-embedding recon-

struction of x(ti), which can be interpreted as ‘Y is

causally influencing X’. In CCM, causal directionality is

detected by assessing whether prediction skill from X to

Y is greater than vice versa.

State-space reconstruction requires a sufficient embed-

ding dimension m (the number of lagged instances

included in the embedding vector), and the CCM algorithm

selects the embedding parameters by optimizing self-

prediction using a geometric projection technique (Sugi-

hara & May 1990). See Haaga et al. (2018) for more details.

In systems with strong unidirectional forcing, the

response variable can be fully encoded in the forcing vari-

able (‘synchronization’), and cross mapping will be

observed in both directions, even if true causality is uni-

directional. To address this problem, Ye et al. (2015a)

introduced a lagged CCM to distinguish synchronization

from true two-way causality. In practice, beyond the sign

of the peak lag, current implementations of CCM cannot

reliably detect the absolute magnitude of a causal time

delay, and the peak lag may not be unique if the forcing

variable is strongly periodic. Instead, Haaga et al. (2018)

proposed to integrate CCM skill over a window of posi-

tive and negative lags, thus sacrificing absolute time delay

information for the sake of obtaining a more robust

detection of causal directionality. Indeed, several aspects

of the CCM approach to causality are topics of lively dis-

cussion, including different ways of subsampling the data

to construct libraries (Luo et al. 2015; Ye et al. 2015b),

the appropriate surrogate data for significance assessment

(Baskerville & Cobey 2017; Sugihara et al. 2017; Haaga

et al. 2018) and the ability to infer absolute causal time

delays (van Nes et al. 2015; Ye et al. 2015a; Coufal et al.

2017; Haaga et al. 2018).

CCM has been applied to records in which samples are

not evenly spaced in time (e.g. van Nes et al. 2015) but

the state-space cross-mapping concept demands that the

variables being compared are sampled at contemporane-

ous points, which might necessitate bin-averaging, inter-

polation, or imputation of data. CCM does not assume

stationarity, hence there is no need to detrend the

observed time series. Measurement errors, sampling noise,

or chronological uncertainty have to be dealt with by

Monte Carlo iterative analyses, which can be computa-

tionally costly. CCM is only defined for the bivariate case,
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but, in principle, transitive multivariate causal chains can

also be resolved through pairwise analyses (Ye et al.

2015a). For dynamical systems in general, the relationship

between the coupled components will vary depending on

the state of the system (think of the two ‘wings’ of the

Lorenz ‘butterfly’ attractor). In the CCM approach, two

variables are causally coupled if they can be shown to

belong to the same dynamical system, but that does not

imply that the relationship between them is fixed through

time. With sufficient data, a moving window analysis can

be used to test for temporal changes in the strength and

directionality of coupling.

The convergent cross-mapping approach to causal

inference has already found a few palaeontological appli-

cations, including time series of Cenozoic planktonic for-

aminifera (Hannisdal et al. 2017), Phanerozoic marine

invertebrate diversity (Cerme~no et al. 2017) and Holocene

reef urchins (Cramer et al. 2018).

Software for running CCM is available as an R package

(rEDM) at https://github.com/ha0ye, and wrapper func-

tions that simplify lagged CCM analyses with surrogate

testing are available at https://www.earthsystemevolution.c

om/page/tools/.

Transfer entropy

Granger causality was originally inspired by ideas from

the theory of prediction, and Granger himself noted early

on its linkages to information theory Granger (1963). A

predictive notion of causality is closely related to the

notion of a directional flow of information, and informa-

tion-theoretic techniques are now widely used to measure

causal dependence in dynamical systems (Hlav�a�ckov�a-

Schindler et al. 2007; Amblard & Michel 2013).

One of the most popular information-theoretic mea-

sures of directional information flow is Schreiber’s (2000)

transfer entropy, which starts conventionally with the

Markov property of conditional independence: If two

processes X and Y are independent, then knowing the

past l states of Y has no influence on the state transition

probability of X, from x(ti) to x(ti+1), beyond knowing

the past k states of X alone. To simplify notation, we

denote x(ti+1) as xi+1, and a vector x(ti, . . ., ti�k) of k past

states is written as x
ðkÞ
i :

pðxiþ1jxðkÞi ; y
ðlÞ
i Þ ¼ pðxiþ1jxðkÞi Þ ð7Þ

Schreiber proposed to use the Kullback–Leibler diver-

gence (Kullback & Leibler 1951; also called Kullback

entropy, or relative entropy) to quantify the incorrectness

of assuming independence, by estimating how much

information is lost if we use the probability on the right

hand side to approximate the probability on the left hand

side of Equation 7:

TEY!X ¼
X

x;y

pðxiþ1; x
ðkÞ
i ; y

ðlÞ
i Þ log pðxiþ1jxðkÞi ; y

ðlÞ
i Þ

pðxiþ1jxðkÞi Þ
ð8Þ

Transfer entropy (TE) is a non-symmetric measure of

information flow, which is equivalent to the conditional

mutual information of Palu�s et al. (2001; Vejmelka &

Palu�s 2008). Note that there is no natural scale for

entropy, hence TE as defined above only yields a relative

measure of whether Y is more relevant for predicting X

than vice versa. Many modifications and different imple-

mentations of TE have subsequently been proposed (e.g.

Chen et al. 2004; Staniek & Lehnertz 2008; Runge et al.

2012; Yu et al. 2017).

Verdes (2005) described a generalized TE conditioned

on a third variable (i.e. a ‘partial’ TE), which he named

information transfer (IT), and suggested a modified esti-

mation algorithm that seemed to maintain statistical

power even for relatively short and noisy time series. The

IT has been adapted and applied to palaeontological and

geological time series analysis (Hannisdal & Peters 2010;

Hannisdal 2011a) to test the common-cause and redun-

dancy hypotheses for explaining associations between rock

and fossil records (Hannisdal 2011b; Hannisdal & Peters

2011; Dunhill et al. 2014, 2017), and to detect causal

interactions between long-term climate change and global

planktonic ecosystems (Hannisdal et al. 2012, 2017)

(Fig. 3). The IT method has been found to be consistent

with other measures of causal dependence (Hannisdal

2011a; Hannisdal et al. 2017). On the other hand, the

Verdes algorithm is a heuristic approach, and the IT as a

directionality measure can be biased if the time series

have very different levels of non-stationarity, or trend. In

practice, the appropriate level of detrending or other data

pre-processing (Hannisdal 2011a; Hannisdal et al. 2012)

has to be tested on a case-by-case basis.

To address these shortcomings, a new approach to esti-

mating transfer entropy is being developed by D. Diego,

K. Haaga and BH (see https://www.earthsystemevolution.

com/page/tools/). This approach is also based on the con-

cept of an attractor as a subset of a system’s state space,

where each state consists of a set of current and past

values from the different time series being analysed. Not

all points on an attractor will be visited with the same

frequency, and the frequency with which a typical trajec-

tory will visit some portion of the state space is related to

the density of the attractor, which is invariant under the

dynamics. If we assume that two time-series X and Y rep-

resent variables that belong to the same dynamical sys-

tem, and that the system has settled on its attractor, then

it is possible to interpret the invariant density of a given

region of the attractor as the probability for the system to

be in any of the states in that region. The usual method

for estimating the probability distributions required for
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computing transfer entropy is the method of nearest

neighbours (e.g. Kraskov et al. 2004), which is very effi-

cient but may lose accuracy unless the number of points

in an embedding reconstruction of the attractor is very

large. Instead, Diego et al. take a different approach

inspired by the work of Froyland (1997), by discretizing

the state space into simple volume partitions (simplices)

and tracking how these volumes change between time

steps. The movement and deformation of volumes

through time approximate the action of the underlying

governing processes. The dynamics are approximated by

the so-called transfer operator, in the form of a Markov

matrix of transition probabilities, which is used to esti-

mate the invariant probability distribution needed to

compute TE. The aim of this approach is to improve

accuracy for short time series, and because the transfer

operator is stationary by construction, there is no need to

pre-process non-stationary data.

Both CCM and TE are referred to as ‘model-free’, or

‘equation-free’ methods, because they take a geometric

approach to detecting dynamical coupling without using

model equations to specify causal mechanisms. TE allows

time series to be unevenly sampled in time, but different

variables need to be compared at contemporaneous points

for the calculation of TE to be meaningful. Unlike the origi-

nal TE (Schreiber 2000) and IT (Verdes 2005), the transfer

operator TE does not assume stationarity and obviates the

need to detrend the observed time series. Like CCM, the TE

currently requires a Monte Carlo approach to account for

noise or chronological uncertainty. Unlike the CCM, how-

ever, the TE can be directly generalized to three or more

variables to test for confounding, or common-cause, inter-

actions. That said, with more variables added in a condi-

tional TE, longer time series are needed to ensure sufficient

information content. TE allows for the relationship

between coupled variables to vary depending on the state of

the system and, with enough data, temporal changes in the

strength and directionality of coupling can be assessed with

a moving window analysis.

Software for computing the transfer operator TE using

the high-performance computing language Julia is avail-

able at https://www.earthsystemevolution.com/page/tools/.

An R package of wrapper functions is forthcoming. This

website also features worked examples and interactive

applications with examples of dynamical systems.

FROM EVENT-BASED REASONING TO
DYNAMICAL CAUSALITY

It is a quirk of human cognition that as we receive a con-

tinuous stream of sensory input, we tend to segment this

A B

F IG . 3 . Detecting a long-term planktonic response to Cenozoic changes in atmospheric CO2. A, six time-series representing coccol-

ithophore Summed Common Species Occurrence Rate (SCOR; a proxy for relative changes in global abundance) and assemblage coc-

colithophore size (Hannisdal et al. 2012), reconstructed atmospheric pCO2 based on the d13C of alkenones and d11B of carbonate

(Pearson & Palmer 2000; Pagani et al. 2005, 2011; Pearson et al. 2009), deep-sea carbonate d18O and d13C (Zachos et al. 2001, 2008)

and reconstructed sea level (Miller et al. 2005). These time series are redrawn from the original data sources used in Hannisdal et al.

(2012). B, the causal relationships inferred by IT analysis of directional information flow among these observed time series (Hannisdal

et al. 2012), where arrows point from the driver to the response. The reconstructed pCO2 record captures a signal of processes that

have influenced coccolithophore size and SCOR over the period 50–5 Ma. Note that sea level has no inferred relationship with any of

the other time series whilst the relationship between d18O and d13C indicates a two-way interaction. See Hannisdal et al. (2012) for

more details, and Hannisdal et al. (2017) for a study of Cenozoic planktonic foraminifera SCOR.
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dynamic information into discrete events with a begin-

ning and an end (Michotte 1963; Zacks & Tversky 2001;

Shipley & Zacks 2008). Temporally extended or ongoing

changes tend to be perceived as a background, or status

quo, against which events are reified and subsequently

‘filled in’ with a cause–effect interpretation (Strickland &

Keil 2011). Event-based reasoning can impede our under-

standing of dynamic interactions in complex natural sys-

tems, such as ecosystems or climate systems (Raia 2008;

Grotzer et al. 2013). In historical geology and palaeontol-

ogy, an event-based causal focus is enhanced by the nat-

ure of the stratigraphic record, which, ‘like the life of a

soldier, consists of long periods of boredom and short

periods of terror’ in Derek Ager’s famous aphorism (Ager

1973). Indeed, event stratigraphy is central to chronos-

tratigraphic correlation and the refinement of the geologi-

cal time scale itself. We certainly do not wish to

downplay the importance of singular events in macroevo-

lution, from key evolutionary innovations to mass extinc-

tions, nor the need to understand the role of unreplicated

events in macroevolutionary theory or phylogenetic com-

parative biology (Jablonski 2017a, b; Uyeda et al. 2017).

We do argue, however, that causal attribution in the con-

text of palaeontological time series needs a dynamical,

process-like notion of causality to complement our

research on events. Raup himself lamented the tendency

in our field of ‘finding specific causes for specific evolu-

tionary events’ rather than seeking generalizations across

groups of events (Raup 1977b). The same concern has

been raised for the interpretation of carbon isotope

excursions across the Phanerozoic, where underlying

dynamics may explain commonalities among a large

number of isotope excursions that are typically treated as

unique events (Bachan et al. 2017).

Palaeontological and palaeoenvironmental records pro-

vide access to only a very small subset of the variables

that may have interacted to generate the patterns

observed in those records. Moreover, most deep-time

records are themselves phenomenological proxies, which

are typically a compounding of different underlying pro-

cesses (e.g. the oxygen isotope record from marine car-

bonates captures past changes in temperature, ice volume,

salinity and pH). But even if we cannot know all the

interacting components (or ‘detail complexity’) of the rel-

evant system, observed time series can capture important

aspects of its dynamical complexity. If so, then the

dynamical information inherent in the observed time ser-

ies can be used to detect causal connections. As noted

above in the method descriptions, this data-driven

approach places certain demands on the information con-

tent of the data that are not always met in relatively

short, noisy and irregular palaeontological time series. In

addition, we note that there are other important empiri-

cal considerations that we have not discussed in this

review, including the appropriateness of measurements

(Houle et al. 2011) and the perennial problems associated

with disentangling temporal process from stratigraphic

architecture (Holland 1995; Hannisdal 2006, 2007; Patz-

kowsky & Holland 2012). On the other hand, the quality

and resolution of deep-time records are steadily improv-

ing, including innovative approaches such as continuous-

time age models (e.g. Nelsen et al. 2016; Husson & Peters

2017).

Thinking about the innumerable interactions that con-

spire to generate our observed palaeontological patterns

can be quite dizzying, ranging from the gene regulatory

networks involved in development (Peter & Davidson

2015), and the vast complexity of ecosystems (e.g. Lima-

Mendez et al. 2015), to biotic feedbacks on global climate

on million-year time scales (e.g. Beerling & Berner 2005).

To illustrate how a dynamical notion of causality might

help us see the proverbial forest for the trees, we make an

analogy with another system of immense complexity that

allows us to think about such things in the first place

(and get a headache): the human brain. While the basic

causal mechanisms behind brain activity at the micro-

level of a single neuron have essentially been understood

since the 1950s, macro-level activities such as movement,

cognition and perception involve interactions of massive

numbers of neurons across large systems of the brain.

Recent technologies such as functional magnetic reso-

nance imaging and electroencephalography provide time

series of this system-level behaviour, which can be fruit-

fully analysed using concepts from dynamical systems the-

ory and surrogate data testing (Breakspear 2017) as well

as Granger causality (Bressler & Seth 2011). Causal

hypotheses can thus be tested on observed time series

without recourse to modelling the underlying complexity.

A time-series analysis approach to causality in neuro-

science has been criticized on the grounds that it can fail

to resolve the full structure of the underlying mechanism

(e.g. Stokes & Purdon 2017). However, this particular cri-

tique fails to make the distinction between quantification

of directional information flow and explicit modelling of

physical causal mechanisms, both of which are legitimate

tasks, but the latter is beyond the purview of the time-

series analysis approach. Instead, a data-driven causal

analysis can uncover dynamical relationships between

components of complex and poorly constrained systems

(e.g. Fig. 3), and thus help guide efforts to build models

of the underlying mechanisms.

Another tentative insight from the study of large-scale

brain activity that could resonate with palaeontologists is

that macro-scale dynamics are not simply the sum of

micro-level components, and that causal emergence

allows for top-down causality (e.g. Hoel et al. 2013).

Although fossils are not neurons, and the question still

remains as to what extent macroevolutionary processes
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are emergent or generated bottom-up from microevolu-

tionary processes (Erwin 2000; Simons 2002; Jablonski

2017a), we note that new theoretical results have raised

the tantalizing prospect of a fundamental link between

the processes of evolution and the principles of learning

(Watson & Szathm�ary 2016).

The types of linear thinking that we typically use in

standard data analysis (e.g. variance partitioning, regres-

sion coefficients) assume that components can be anal-

ysed separately and then added back together. However,

this approximation often fails in both living and Earth

systems, where components are intertwined and may

interact in such a way that any linear correlations are

transient and may even switch sign (referred to as ‘mirage

correlations’ by Sugihara et al. 2012). Although there is

no substitute for a well-posed question that can be

answered with limited data and simple methods, we must

acknowledge that the systems from which we obtain time

series (and the causal questions we ask of them) may be

far from simple, and may require analyses that are con-

ceptually and computationally involved. We want to

know what has ‘driven’, ‘tracked’, ‘interacted with’ or

‘controlled’ the intriguing patterns of temporal change

observed in deep-time records, but the way we pose cau-

sal questions belies the epistemic challenges involved in

answering them. The methods discussed in this review

invite us to take a step back and think carefully about

what it means to formulate and test causal hypotheses on

time series.

A defining topic of palaeontology is the interplay of eco-

logical, evolutionary and environmental processes responsi-

ble for the long-term maintenance and turnover of Earth’s

biota. Palaeontological data provide pre-anthropogenic

baselines and deep-time lessons critical for understanding

current systems as well as their recent, near-term and long-

term future responses to change (National Research Coun-

cil (US) 2011; Hannisdal et al. 2012, 2017; Harnik et al.

2012; Dietl et al. 2015; Finnegan et al. 2015; Kidwell 2015;

Schmidt 2017). With the looming threat of large-scale dis-

ruption of global ecosystems, there is a need for palaeontol-

ogists to be bifocal: we need to zoom in to uncover the

historical particulars of individual events, but also zoom

out to search for underlying causal structures that may hold

general lessons across multiple events. A dynamical, pro-

cess-like concept of causality may be a Rosetta stone that

can assist in deciphering the messages encrypted in

palaeontological time series.
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